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Abstract

TWIST is a simple computer model of reactor-scale
stellarator devices. It allows determination of para-
meter sets which optimize given objective functions and
simultaneously take into account any constraints which

may be imposed on any of the model variables.

The model is based on equations describing the geometrical
arrangement, together with the plasma, blanket, shield, and

magnet system.

Typically, constraints are imposed on the ignition margin,
first-wall loads, neutron fluence, coil current density,
maximum magnetic induction at the coils, coil tensile
stress, neutron dose to the magnets, and dpa's and helium

concentration in the first-wall material.

The application of TWIST is demonstrated in sample cal-
culations for reactor-scale devices based on magnetic field

configurations of the Wendelstein VII-AS type.




1. Introduction

During the systems studies at IPP the layout of large
tokamak experiments and reactors was observed to be
governed by the performance objectives aimed at and by the

characteristics chosen for the design /1/.

Performance objectives, e.g. the minimum ignition margin
to be achieved, and design characteristics, e.g. necessary
clearances between adjacent coils, can be included as con-
straints which have to be met in solving the equations
modelling the device. That solution which optimizes a pre-

scribed objective function is kept.

This procedure, which has been described in detail in
/1, 2/, was adopted with its basic features unaltered to
set up a model for stellarator devices. The model described
in this report is still a very simple one. This is mainly
due to the fact that much fewer systems studies have been
conducted for stellarators than for tokamaks. Many of the
model equations are therefore simple first approximations.
When some insight into the parametric interdependences of
stellarator devices has been gained, the model may be im-
proved step by step via refining or adding equations. This
is facilitated by the solution method chosen in /1, 2/, where
the individual equations are always evaluated in the same
order. The addition of an equation calls for considering

whether all input necessary for its evaluation is available



at the position chosen for it in the solution sequence.
Formulation of equations which calls for iterations should
be avoided because the model is intended as the basis for a
fast running computer program which is capable of scanning

large parameter spaces.

2. Description of the model

2. Geometry

The shape of the minor plasma cross-section is deter-
mined by the magnetic surfaces formed by the interaction of
the vacuum magnetic field with a finite-B8 plasma. The
plasma shape varies periodically with the toroidal angular
coordinate ¢, having a total of p periods along the major

circumference. By using the area A of the plasma cross-

pl

séction, an average minor plasma radius ap is defined:

72

= 1
a, = (a,/m) (1)

P
Because Apl varies with ¢ in a periodic manner, the toroidal
average of Apl will be used in eq. (1). The geometrical

centre of the plasma cross-section is situated, on the aver-

age, at the major radius R




The plasma is surrounded by a chamber with an elliptic
minor cross-section (see Fig, 1). Its minor half-axis a

is chosen to be

' (2)

Fig. 1: Geometry of plasma and first-wall surface

dpw being the distance between the inner and outer edges of
the plasma and the inner contour of the chamber (see Fig.1).
The choice of eqg. (2) is based on the assumption that
there exist toroidal locations where the plasma cross-

section does not strongly deviate from being circular, as

is illustrated in Fig. 1. If the plasma cross—-section is




everywhere strongly elliptical, ap in eq. (2) has to be
replaced by a length which is about equal to the toroidal

average of the minor half-axes of the plasma.

All components surrounding the plasma are modelled as
toroidal shells with elliptic minor contours, each with a

certain radial thickness, as is shown in Figee2.

Fig. 2
Geometric arrangement of
the components surrounding

the plasma

The inner chamber wall facing the plasma is character-
ized by the minor half-axis a, following from eq. (2) and

the major half-axis

b =e_ =+ a , (3)

€. being the vertical elongation of the chamber inner wall.

The thickness of the chamber wall is dw.




e |

The blanket thickness db is determined from the required
T-breeding. It is assumed constant all around the plasma.
This simple assumption is made because, for the time being,
no problems are anticipated in connection with space require-
ments in the centre of the device and with magnetic field
economy. This is due to stellarator specific features such as
the presumably large aspect ratios Ap and the omission of the

OH transformer. The minor and major half-axes of the inner

blanket contour are given by

ab = aw + dw i (4)
bb s bw + dw (5)

The blanket is surrounded by a radiation shield with

thickness dS and the half-axes

a_ =a_+4_ , (6)
b =b, + d (7)
of the inner contour.

Behind the blanket a clearance of thickness dpc is
provided which may remain empty but may be necessary for

finding a consistent set of device parameters which both

optimizes the objective function selected and meets all
constraints imposed by physics, technology, design and

topology.



The clearance may also be used to accommodate a
ring-like structure to support the radial magnetic forces

acting on the coils. Such a concept has been proposed in

/3/.
The half-axes of the inner edge of the clearance are:

apc i, % ds . (8)

b =b_ +4d_ . (9)
pe S S
The clearance is enclosed by the casing and the thermal
insulation of the magnetic field coils, which has a thick-

ness ¢ - The half-axes of the inner contour are

' (10)

b, =b + d . (11)

The coil is characterized by its centre line, which

has the half-axes

a, = a; + di + dcr/2 7 £12)

bC = bi + di + dcr/2 . (13)

The magnetic field is generated by a total of NC coils.
In general, the toroidal modulation of the coil conductors
varies from coil to coil within one field period, but is

periodically repeated p times (p = number of field periods




along one toroidal revolution. The lateral extension dtc

of the coils is given in units of the radial thickness drc:

= £

dct 0 o dcr : {5
For simplicity, the major axes of all ellipses are
assumed to coincide with the major axis of the elliptical

coil centre line. In an actual device the orientation of
the major axis of the centre line with respect to the main
torus axis may oscillate periodically with the toroidal
angle ¢ . This modulation may, for example, facilitate
generation of a desired flux surface pattern by coils the

minor cross-section of which has been made elliptical to

simplify manufacture.

2.2 Basic equations

The following equations together with the constraints

to be treated later (Sec. 2.3) form the basis of the model.

The equations are written in MKSA units if not other-

wise stated.




2.2.1 Geometric relations

A plasma aspect ratio Ap is defined by
R =A_ a_ . (15)

The various volumes involved - penetrations are not

considered here - are given by

V.= 21" a° R (16)
p P P
(Vp = plasma volume),
¥ 2524254% {3 4p k8 IR (17)
N W w ow W p
(Vw = first-wall volume),

vV, = 2n2 d

b b (ab+bb+db)Rp (18)
(Vb = blanket volume),
V. = 2n2 ds (a_+b _+d )R (19)
s s s s''p
(VS = volume of the shield surrounding the blanket),
V. =212d__ (a_+b_+d )R (20)
pc pc pc pc pc p
(Vpc = volume of the clearance between the outer edge of the

radiation shield and the inner edge of the thermal insulation

for the coils),

_ 2
Vi = 27 di (ai+bi+di)Rp (21)

(Vi = volume of coil casing and thermal insulation pro-

tecting the coils).



The volume of a single coil is given by

VC =g, * “dcr dct (ac+bc) . (22)

The factor = (> 1) describes the increase of the coil
volume caused by the toroidal modulation of the modular
field coils assumed. The size of 9 mainly depends on the
amplitude of the toroidal modulation and the l-number of the
stellarator field predominantly to be generated by the
coils. In general, = will vary from coil to coil within one
field period so that an average value of 9. has to be used

when calculating the total coil volume Vct from

Vct = NC VC . (23)

The total coil volume VC comprises the volumes of the con-

t

ductor, stabilizer, reinforcing material,cooling ducts,

and electrical insulators.
The area Aw of the inner wall surface is given by

Aw = 21er . lw (24)

(lW = circumference of the first-wall contour facing

the plasma) ; 1w is approximated by
T = slle iy ) DT%da <b oA+, 5] (25)
" W oW W oW W oW y

This formula is accurate within 2 - 10"4 up to bw/aw = 2.




2.2.2 Relations_pertaining to_the plasma

The normalized rotational transform t = t/ 27 (v =
rotational transform angle) at the plasma edge is a strong
functional of the coil configuration. The main parameters

determining t are the l-number, the coil aspect ratio Ac =

)1/2, the toroidal amplitude aLt of modular

coils, and the number p of field periods. Therefore t is

= Rp/(aC bC
written as

t =t (1, A r a Py mscx)s (26)

ct’

For a system with 1 = 2 the authors of /5/ propose

formulae which lead to

t = a6,/ (aper) (27)

(AQEt = toroidal modulation amplitude in angular units,
ec = 1/Ac); we assume that A¢bt will be of order 2n/Nc.
To allow numerical results to be represented by a
formula generalizing eq. (26), the following relation will
be used for 1 = 2:
alN oE

o - TP N N e o, (28)

The factor P and the exponents ap, aN, ae have to be taken

from numerically calculated magnetic field distributions.




The maximum average B-value (useful part of the total B)

achievable is determined from a function to be specified

for the actual case treated:

B =8 t;A rl;....
( P ) (29)

(B = volume average, t = rotational transform at the plasma

edge in units of 2n). The parameters explicitly displayed

in eq. (25) presumably are the basic ones if B is limited

by plasma equilibrium.

For a configuration with 1 = 2 the relation

B =g, - t/A (30)
shall be used. The basic scaling B v t2/Ap is taken from

/4/. The factor g8 has to be taken from numerical cal-

culations of plasma equilibria with finite B-values.

We characterize the plasma energy balance by a

dimensionless parameter, the "ignition margin":

Cio= €. =P /Py (31)

(pu = ag-heating power density, Py = transport loss power

density for a reference situation, €y = fraction of

a-power trapped by the plasma. The value Gy 1 de-

scribes a system with transport losses according to the

reference rate which are just covered by the trapped

a-particle heating power. Additional losses such as




bremsstrahlung, impurity line radiation or transport losses
which exceed those anticipated by the Py used in eq. (31)
are described by an appropriate enhancement of c; above
unity if an ignited plasma has to be treated. Driven

systems are characterized by c; < 1.

In general, Pa/pt depends on the physical and geometric
parameters of the plasma (t, B, Ap, a, temperatures, pro-
files). The actual relations between the parameters de-
termining eupa/pt have to be determined by using a numerical

transport code.

For a stellarator plasma the slowest transport that
can be expected is "neoclassical", possibly with some re-
duction by tying the particle drift orbits as closely as

possible to the magnetic surfaces ("drift optimization").

To get an insight into parametric dependences, we evaluate
eupa/pt for neoclassical particle and energy transport in

the plateau regime for both electrons and ions. With no

radiation losses at all, T, ~ T _, p BZB 4<UV>/T.2, and
i e a o i

v 32 3 .
B & B T}_ /t Ap ap, this leads
B t A a3 B4 v c.T.7/2/e <gv> (32)
P P O i*i o
(B0 = magnetic induction at the plasma centre, Ti = volume

average of the ion temperature, Te = volume average of the

electron temperature, <ov> = fusion reaction parameter) .




Because <ogv> v T12 is approximately wvalid in the range

<

8 Ti X 20 keV, one gets roughly

3 4 3/2
Bt Ap ap BO v CiTi /ea . (33)

Hence the value of the parameter combination 8 t A a . B i

Pz P O
for ignition (ci = 1) in a regime dominated by neoclassical

transport losses increases rather strongly with Ti'

To determine the variation of B t A a 3 B 4 with Ti

P P o
precisely, a numerical solution of the stationary energy and

particle balances for a plasma with DT ions (m = 2.5),

electrons, and no radiation losses has been used /6/. Figure 3

i o 3 4 .
shows sz = sz (Ti) =B t Ap ap BO for various cases

(e = 1). The solutions used are globally stable against

o
5/2)

thermal runaway because Pt (v nT increases more steeply

2

with T than P, (v n T2) if the density n is determined by

a fixed refuelling rate.

The two cases treated are characterized by Rp = 24 m,
ap = 1.65m (Ap = 14.55) together with t = 0.6, BO =572 T

or t = 0.4, Bo = 5.755T.For these two sets of parameters the

product t A a . B 2 is the same. Refuelling in both cases

PP o
is assumed to occur according to the strongly peaked spatial
2

]10_

distribution (3n/at)ref N [1—(r/ap) The amplitude of

the radial profile is varied. This variation leads to a scan

of Ti' Te and n. The actual value of B is calculated from
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curve b t = 0.4, Bo =.59+735,T,; neoclassical transport
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these results. The products of B with tA_a 2 B s as functions

P P o
of Ti are displayed in Fig. 3. The two curves for t = 0.4
and 0.6 do not completely coincide. This is due to the
transport processes assumed: (1) neoclassical transport
for the electrons including the 1/v-contribution (v = Coulomb
collision frequency) due to the helical ripple /6/;
(2) neoclassical plateau transport for the ions even in the
regime of long mean free paths /7/. A model helical ripple
distribution €y = EO+E1 . (r/ap)2 with g T 3%, i i 15 %
was used throughout. The 1/v-contribution to the electron
transport makes the transport depend on the density and hence
causes the slight difference between the curves for t = 0.4
and 0.6.
Because no radiation losses at all have been accounted for

and € 1is equal to unity, all results are characterized by

o
c; = 1.

The relation BtA_ a . B b " TJ.LB/2 is confirmed by the

P 0
numerical calculations as being a reasonable approximation

(see the dashed lines in Fig. 3).

The addition of an anomalous electron heat conduction
according to the evaluation of experimental results pre-
sented in /8/ alters the result only slightly (see the small

3

deviations between the Bt:Ap ap BO4-curves for low values

of T.l in Fig. 3).




The scaling with respect to Ap and ap given by eq. (31)

was reproduced by using RP = 20 m instead of 24 m together

with ap = 1.807 m instead of 1.65 m. The corresponding

variations are so small that they cannot be discriminated

in Fig. 3.

In the optimization program the ignition margin c; of
a plasma with the actual parameters B, t, Ap, ap and BO

is calculated from

c., =T e B tA a3B4/f

1 a P P O (24

zR

where f__ is the parameter combination 8 t A a : B 4
ZB P P o
characteristic of an ideal case chosen to normalize the

actual combination €, BtA a : B - in order to yield the

P P o
dimensionless parameter c; defined by eq. (31). As the ideal

situation we use that exemplified by the curves a and b

in Fig. 3 (neoclassical plateau transport for the ions,
complete neoclassical electron transport, complete trapping
of o-power by the plasma, i.e. B & 1) . Hence sz is an in-
put paramter which depends on Ti and profile shapes as has
been demonstrated above. Typical values for sz may be taken
from Fig. 3 if the operating temperature of the reactor

plasma has been chosen and the profiles are similar to

those shown in Fig. 6.

If transport laws other than the predominantly neoclassical
ones of the previous description are used, eq. (34) has to

be replaced by an appropriate relation. For ALCATOR scaling



(1. v n apz), for example, the appropriate relation would

_ 2 2 4
be c; = € B ap BO /sz 3

portional to T, andagain depends on the profiles of n and T.

, Where fz is approximately pro-

The fusion power density(plasma volume average)is calculated
from ‘

B = g ~ BB . (35)

For the DT reaction the factor Ye is of the order 2 - 10-6

(MKSA units; B is a pure number,not in per cent). It depends
on both the profile shapes of n and T. Because Y is
essentially proportional to <ov>/T2, it exhibits a flat
maximum for Tni between 10 and 20 keV (Tni is the density
weighted volume average of the ion temperature). In Fig. 4

various curves Y vS. Tni are shown.

Fig. 4: Factor Yf vSs. Trli for various cases.
Square profiles of n and T:
- curve a : <ov> from table /10/,
- curve a': <ov> from formula /9/.

Profiles of n and T resulting from c; = 15

Ap = 24/1.65 = 14.545, ap = 1.65, refuelling pro-

file ~ [1-(r/ap)2]1o, helical ripple €y =
= 2 i ] % = .
so+51(r/ap) with €6 3 %, € 15 %:

<gv> from formula /9/:

- curve b : t = 0.6, BO = 5.2 T neoclassical transport

- curve cC t = 0.4, By & 52155 T " .

- curve d': t = 0.6, BO = 5.2 T neoclass.+ anomalous

- curve e': t = 0.4, Bo = 5,755 T " + " g
<gv> from table /10/:

- curve d : t = 0.6, BO = 5.2 T neoclass.+anom.transport

- Ccurve e : t = 0_4’ BO = 5.755 T " + " n
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Curve a' is valid for square profiles of n and T to-
gether with <ov> according to the well known formula
<ov> = 3.68 x 10-18 T2/3 exp(—19.94/T1/3) <gv> 1in m3/s,
T in keV given in /9/. This formula for <ov> has been used
in all energy balance calculations cited in this paper
- if not otherwise stated - because it was used in the
original version of the computer program /6/. In fact, this
analytical approximation yields appreciably lower <ov>-
values for 5 keV < T < 30 keV than those contained in the
table in /10/, which is in common use. The values of <ov>
from the above formula and from the tables are shown in Fig.5.
The maximum deviation in the range of interest for us occurs
8 keV and T = 15 keV. It amounts to a factor
10 keV.

between T
1.43 at T

Curve a in Fig. 4 has been calculated for comparison
with curve a'. Again square profiles for n and T were used
but <ov> was taken from the table mentioned. The Yf-values
according to curve a are well above those from curve a'.
The maximum exhibited is more pronounced. It occurs at
Tni = 13.5 keV.

The values of A for a given value of Tni become much
higher if the profiles of n and T are no longer square but
peaked. This well-known fact rests on the nz—scaling of the
fusion reaction rate and on the strong increase of <ov>

with T in the interval of interest for a DT fusion plasma.

Fig. 6 shows various calculated profiles of n and T normalized

to their central values. The shapes of all T-profiles closely
coincide. The same is true of the n-profiles. This is wvalid
although a wide range of central temperatures (T, (0) = 4.5

to 21.5 keV), central densities from 4 to 8 x 1o§0 m_3,

c; between 1 and 1.2, and the inclusion as well as the ex-

clusion of anomalous transport are covered.
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Fig. 5: curve a: <ov> according to the table in /10/;

curve b: <gv> a-cording to the formula in /9/.
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Fig. 6: Radial profiles of n and T corresponding to t = 0.6,
B =5.2T, A_ = 24/1.65 = 14,545, a_ = 1.65 m,
= P 2510 :
refuelling profile ~ [1—(r/ap) 1", helical ripple
= 2 » - )
ep = €O+E1-(r/ap) ' Eg = 3 g, €4 = 15 %:
- curve a T-profile, Ti(O) = 6.62 keV,
neoclassical transport, c; = 1
- curve b T-profile, Ti(O) = 21.69 keV,
neoclassical transport, c, = 1
. curve c corresponds to curve a: n-profile,
ni(O) = 4,05 x 102O m_3
- curve d corresponds to curve b: n-profile,
n; (0) = 8.52 x 1020 n~3
X neoclassical + anomalous transport;
T . = 10 keV, n = 1.35 x 102° m™3, 3 =9,
ey = 1.19
() : as in case x but <ov> from the table in /10/;
- . e 20_-3
Tni—1O keV; n=1.15x10""m ~°, B=3,6%, er=1 2!
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All quantities related to the fusion power are cal-

culated on the basis of the fusion power density Pe given

by eqg. (35):

P, = 0.8 pg (36)
(pn = neutron power density),

p, = 0.2 pg (37)
(pa = a—power density),

P. =P, ° vp (38)

(Pn = total neutron power),

Pa =P, - Vp (39)
(Pa = total a-power),
Pe S P +P (40)

(Pf = total fusion power),

P =M

th P + P (41)

BE " ®p o

(P = total thermal power, = factor of energy multi-

th Mb1
plication caused by exothermic nuclear reactions in the
blanket),

qn - Pn/Aw (42)

(qn = neutron power per unit of first-wall surface),




q, =P /A, (43)

(qa = o-power per unit of first-wall surface; q, is not
necessarily equal to the heat flux density to be trans-
mitted through the first wall because of divertors or

limiters which may be present),

de = Pe/A - (44)
(qf = fusion power per unit of first-wall surface),

Q, = a, * T,/ (3.154 x 107) (45)
(Qn = time-integrated neutron wall load in W-y/mz,
Bige = full power burn time in s).

2.2.3 Relations pertaining to_the _magnet system

The relations compiled in this sections are simple
estimates which are only meant to serve as zero-order
approximations. They will have to be refined if specifically
tailored coil systems are to be included in the optimization

procedure.

As a basis the average Bo of the magnetic induction taken
along the average plasma cross-section centre line is used.

The relations resting on B0 are as follows:




- |
Ho = Bolg (46) |
Ict - 2“Rp ) Ho (47)
(ICt = total current in the coils surrounding the plasma),
To = Tee/No (48)
(IC = average current per coil, NC = total number of coils),
Jo = I /(4,4 ) (49)
(Jc = dgross winding current density; the area dcr'dct com-

prises conductor, stabilizer, reinforcing material,

electric insulators and helium cooling channels),

Bom = Bgp (Byr geometry) . (50)

ch is the maximum magnetic induction which occurs at one

or more locations of the coils. Owing to the lack of axi-

symmetry in stellarator configurations the enhancement of

ch with respect to BO is greater than that given by

ch = BO Rp/(Rp—aC + drc/z). (51)

Equation (51) only accounts for toroidicity but neglects the
effects produced by toroidal modulations of the coils.

These modulations lead to current concentrations and
additional curvatures. The corrections to be applied to

eqg. (57) have to be taken from numerical or analytical cal-
culations once the type of coils has been specified. To our

present knowledge ch/Bo is about 2 for Ap = 15 /14/.



The magnetic energy stored in the magnetic field con-

figuration is approximately given by

_ 2 . 2
Em = 27 Rpacbc BO /2uO . (52)

The maximum tensile stress Ocm is estimated from
o = 9B Po/M oy = 9, En/Ver (53)

(pc = average mass density of the coils, MCt = total mass
of coil system, VCt = total coil volume). The scaling used
in eq. (53) is based on a generalized virial theorem /11/;
the factor 9, has to be taken from coil designs supported

by finite-element stress calculations. To our present know-

ledge 9, amounts to about 3 /12/.

2.2.4 Relations_pertaining_ to nuclear_aspects

Some parameters which will most probably have to meet
constraints are determined by nuclear reactions in the
first-wall, blanket and shield areas. The formulae given
in the following are based on a parametric study of
various breeding materials /13/, from which the figures
and relations valid for a blanket composed of LiZO and

316 SS steel have been taken as representative.
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The tritium breeding ratio T is given by the following

formula, which closely approximates the numerical results:
T = fT « 1.289 [1—exp(—db/0.144)] (54)

(db = blanket thickness in m). The dimensionless figure
fT (< 1) takes into account features such as incomplete

coverage of the plasma surface by the blanket or voids caused

by the cooling 1lines.

The energy multiplication Mbl due to exothermic nuclear

reactions in the first wall and blanket is approximated by

M4 = fM - 1.274 [1—exp(-(dw+db)/0-1212)] (55)

(dw = first wall thickness in m, db = blanket thickness in m).

The factor fM corresponds to fT introduced by eq. (54).

The neutron dose dsnc affecting the coils behind their
shielding is given by

11
dsnc = 4.44x10 - £ antot-exp(-db/O.TZ)-exp(~ds/0.0776) (56)

[

2 . 2 . .
(dsnc in neutrons/m", g, in W/m"™, in s, d, and ds in

b

m). The first exponential factor in eq. (56) describes the

Ttot

neutron flux attenuation by the blanket, the second the

action of the radiation shield. The factor fc is the ratio of
collided to uncollided neutron flux density at the blanket
front edge.

The total number of displacements per atom (dpa) of

the first wall material is given by




_ -6 7
d = 11.6 x 10 A Ty’ (3154 x 107) (57)

pa

: 2 :
(qn in W/m"™, Tial in s).

The concentration of He atoms produced in the

first-wall material by (n,oa)-reactions is given by

n. =174 x 10°°

.
e A Tpop/ (3-154 x 107) (58)

in s).

(n tot

. . 2
He 1M PPM, q_ in W/m®, 1

2.3 Constraints

Some of the quantities determined from the set of model
equations may have to meet constraints imposed by tech-
nological limitations, design characteristics, and per-

formance objectives.

The constraints which can be imposed in the present

version of the model are as follows:

) (59)

N d < 2n(R_-a =-0.5 d
¢ ¢t — p C C

(the sum of the toroidal coil thicknesses must not exceed

the available space at the main axis side of the torus),
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>
(018 c, ;
i e Bl T (1 K o
P ; = P P
th,min— ~th th,max '
<
5 — qn,max .
9 < q ,max ’
= < <
Qn,mln - Qn - Qn,max !
’ o &
I . jc,max d
B < B ,
cm — “cm,max
a < g ,
cm — ‘cm,max
T > .,
— “min
ds < ds ’
nc = nc,max
dpa < dpa
p = 9PAnax
n < n
He — "He,max

2.4 Optimization

The aim of the optimization is to find a set of
numerical values for a set of fundamental wvariables.

chose the following set:

(60)

(61)

(62)

(63)

(64)

(65)

(66)

(67)

(68)

(69)

(70)

(71)

We
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£ = rotational transform/2n, see eq. (28);

Rp = plasma major radius (see beginning of Sec. 2.1);

dpc = clearance between blanket and coils, see Fig. 2;

ds = shielding thickness, see Fig. 2;

dcr = radial coil thickness, see Fig. 2;

B0 = average magnetic induction at the plasmas'
geometrical centre;

NC = total number of magnetic field coils;

jo) = number of toroidal field periods.

The model equations together with the constraints do
not, in general, uniquely determine the above set of vari-
ables. To define the problem completely, an objective
function is introduced, which depends on the above vari-
ables. That combination of variables which maximizes (or
minimizes) the numerical value of the objective function

is considered as being the solution of the model equations.

The optimization procedure is exactly as described in
/2/. The details will therefore not be repeated here. For
each of the variables an interval is given as input. For
each point of the parameter space thus spanned the model
equations are evaluated and the corresponding constraints
are checked. From all combinations of variables meeting the
constraints the one optimizing the objective function is
retained. In the environment of this solution a refined
grid is spanned and the procedure is repeated, until a
desired accuracy limit (imposed on the objective function,

for example) is met.



The above procedure is performed for fixed values of
the integer variables Nc and p. After a solution has been
found, the procedure is repeated using other discrete values
out of the intervals specified for Nc and p. Those values
of Nc and p which optimize the objective function together
with the values for the continuous variables form the

final solution.

3. Sample calculations

3.1 Parameters

Equation (28) for t is specified to be

2 2 4

t =1.44 x 7 /(p Ne Eq ) (72)
which means that

He = 1.44 ,

ap = 1 ,

oN = 2 ,

ae = 4 .

The value g5 1.44 stems from magnetic field cal-

culations for W VII-AS type configurations with reactor
dimensions /14/. The values for ap, aN, and ea are taken

from the scaling relations for 1 = 2 stellarators given

in /5/.
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For B we adopt eq. (30) in the form
8=t/ (73)
p r
which means that
95 = 1.

The parameter £ in eq. (34) for the ignition margin

zB

ci is chosen to be

£ _=6x 10° ,
which according to Fig. 3 corresponds to

Ti = 6 keV (volume average of the ion temperature) .

To be consistent with Ti = 6 keV and the underlying

profiles, we use for the fusion power density in eq. (35)

6 4
yg = 1.7 x 10 w/mS T (see Fig. 4).

For the remaining parameters to be given we use

= = 0.9 eq. (31), a-trapping efficiency

: = Je3 eqg. (22)

g, = 3 Pa-m3/J eq. (53)

S = 1.5 eq. (3), elongation of plasma chamber
ey = 1 eq. (14), coil thickness/width
dpw = 0.1 m eq. (2), distance plasma-wall

dw = 0.01 m Fig. 2, wall thickness

di = 0.1 m Fig. 2, insulation thickness

fT = 0.9 eq. (54), blanket coverage for T
fM = 0.9 eq. (55), blanket coverage for Mbl
T = 1.1 eq. (54), tritium breeding ratio

T = 3.154 x 1O7s=1a total burn time.




3.2 Constraints

c; 2 2,

1.0 MW/m2 <49, < 1.5 MW/m2 i

jc K 2eD % 107 A/m2 :

o < 2 X 1O8 Pa ,
cm —
21

ds < 5 x 10 neutrons/m2 ;
nc —
dpa < 100 ,

Ngo < 1.500 .

3.3 Objective function

As objective function we use a highly simplified ex-
pression for the direct capital cost of the major torus

components plus auxiliary heating:

DCC

100 (DM/kg) - MW + 100 (DM/kg) - Mb

+ 25 (DM/kg) - M, + 100 (DM/kg) - M,

+ 320 (DM/kg) - Mct+0.2/ci - 5 (DM/W) - Pa . (74)

Mw’ Mb’ MS, Mi’ Mct are the masses of the first wall,
blanket, shield, thermal insulation plus coil casing,
and all coils calculated from the respective volumes (see

Sec. 2.2.1) and estimated average mass densities. The last

term in eq. (74) is the cost of auxiliary heating.




3.4 Results

For lack of a realistic relation between the magnetic
induction BO on axis and the maximum induction ch at
the coils we fix BO at 5.2 T. This value leads to
ch = 8 to 9 T for W VII-AS type coil configurations of
reactor scale.

We keep the values p = 5 and Nc = 50 fixed.

The optimum solution determined by the STOP program
set up on the basis of the material presented in Sec. 2

is characterized by:

p =l = 0.6904
R = 17.6884 m
P
d = 0.3715 m
s
d =0
pc
d = 0.6982 m
cr

DCC = 1.0 (rel. units)

Gy 2 2 . (constraint met)

g = 145 MW/m2 (upper constraint met)
Oais = . MWy/m2

j, = 1.8870 x 10’ A/m?

i = 2 X 108 Pa (constraint met)

dsnc==5 X 1021 neutrons/m2 (constraint met)

dpa = 17.4

]

n

He 261 ppm




a = 1.7695

P m
A = 9.9964

p

a = 1.8695 m

w

bw = 2.8042 m

a = 3.1264 m

C

bc = 4.067T1 m

_ 1/2 _

r, = (acbc) = 3.5632 m
B = 0.04769

pr = 2.8268 MW/m’
P. = 3.0903 GW
P, = 3.3753 GW
Pa = 618.06 MW
db = 0.4263 m

The optimum combination of numerical values for the

variables t, R_, d_ , d__, and 4 is within the ranges
P S joTe cr

which were given for these variables.

To exemplify the case of an optimum produced by a
variable assuming one of its two prescribed limiting

values, we now restrict t to the range 0.t < t < |-

with tmaX between 0.60 and 0.69. This means that t has

to be smaller than t = 0.6904.
opt

The optimum solution is always reached for a t

attaining its maximum admissible value. The constraints on

21
c., ds and ¢ > < 2
it - Cm(ci_ 2, dsnc S5 x 10 neutrons/m?, and

o] < 2 x 10 ® Pa) are again met for all values of t )
cm - max

The upper limit on g (qn < 1.5 MW/m?) is no longer




0.60 0.65 topt 07

Fig. 7: Some characteristic variables as functions of t

(limited to values smaller than t = 0.6904) ;
2 opt

q, in MW/m", ap inm, r_ imm, B in %;

DCC is normalized to its value for t = topt'
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reached but L decreases with tmax' This is shown in Fig. 7,
which displays q, together with ap, Ap, 8, s and DCC. The
values for t =t are also shown. A limitation of

max opt
tmax to 0.6, which may be necessary, for example, for physical
reasons leads to a cost increase of 20 % with respect to

the optimum solution. The corresponding variations of ap,

Ap’ B, and rc remain moderate.

At present a value of t = 0.6 can only be attained at

Ap = 15 for W VII-AS type configurations.
An increase of the total burn time — from
3.154 x 107 s (= 1 year) to 7.885 x 108 s (= 25 y) but leav-

ing unchanged all parameters characterizing our first example

lead to the following optimum sets of values:

t = 0.7599
R = 18.5075 m
P
d = 0.6216 m
s
d = 0.0113 m
pc
d = 0.7224 m
cr
DCC = 1.0821 (rel. units)
cy = 2 (constraint met)
18 = 1.5 MW/m2 (upper constraint met)
Qn = 37.5 MWy/m2
jc = 1.8441 x 1O7 A/m2
B iy 2 x 108 Pa (constraint met)
dsnc =5 x 102‘I neutrons/m2 (constraint met)
dpa = 435
n = 6525 ppm
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_37_
= 1.6077
ap 6o m
A = 11.5121
p
a = 1.7077 m
w
bw = 2.5615 m
a, = 3.2380 m
bC = 4.0918 m
_ /2 _
r. = (acbc) = 3.6399 m
B = 0.0502
P, = 3.1281 MW/m’
Pf = 2.9536 GW
Pth = 3.2259 GW
P = 590.7 MW
o
db = 0.4264 m.

As expected, a major change is the increase of the
shield thickness ds from 0.3715 m to 0.6216 m. The
variations of all other values remain moderate. This is
most probably due to the fact that the increase of LT
is reflected in the highly simplified objective function
merely by the increased shield thickness but not via other
routes such as maintenance (provision of first-wall re-
placement, for example) or availability (cost for reliability
of auxiliary heating, for example). Both sample calculations
should be considered as examples of how to use TWIST. They
give some insight into consistent parameter sets of reactor

scale stellarators but do not yet form part of a systematic

study.
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